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Then £, the solid angle shielded is given by
«  aF@)
Q=2 S S sinf d6 dg

-8 0
=2 {7 sino F(9) a0
vy-p
Finally we get the ‘shielded fraction’ by dividing by
the total solid angle subtended by oxygen O(1).

Q
i ] 1 = — . — .
Shielded fraction 57 (1 Zcosa)

Case 3. Large fraction shielded

If y<f<a+y, overlap occurs and the width of the
area shielded lies between the radius and the diameter
of the atom being shielded. In this case the solid angle
shielded = A+ B,

Sy

2r
where 4 =S S sind d6 dg
0 0

2n[1 —cos(f—7)]

and B = 28“ sinf F(6) d6 .
B~y

Then for the ‘shielded fraction’ we have
A+ B

27(1 —cosa)

‘Shielded fraction’ =

Case 4. Complete shielding

If f>a+7y the oxygen atom is completely shielded
and

‘Shielded fraction” = 1.
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Neutron Diffraction Refinement of the Structure of Potassium Oxalate Monohydrate
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The structure of potassium oxalate monohydrate has been refined to a high degree of precision using
three-dimensional neutron diffraction data. The conventional R value is 0:026 and the estimated stan-
dard deviations of atomic coordinates are between 0001 and 0-003 A. The oxalate ion is not quite planar
with a separation of 0-037 (6) A between the two parallel carboxyl planes. The C-C bond length is
1-581 (2) A and the two C-O bond lengths are 1-262 (2) and 1-256 (2) A. The O-H distance in the hy-
drogen bonds from the water molecule to the oxalate jon is 0-963 (3) A; the O- - - O distance is 2-754 (2) A,
the O-H---O angle is 169-66 (22)° and the H-O-H angle, 107-62 (33)°. The root-mean-square am-
plitude of thermal motion of the water oxygen atom is considerably larger than that of the hydrogen
atoms in some directions. The structure is compared with a recent X-ray structure of the same crystal

and the agreement is excellent.

Introduction

In an earlier paper (Chidambaram, Sequeira & Sikka,
1964) (CSS) we reported a two-dimensional neutron

diffraction study of the structure of potassium oxalate
monohydrate. In that study the water molecule was
shown to have a rather unusual type of coordination
with neither of its two lone-pairs of electrons being
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specifically directed. The water molecule in this crystal
has recently also been the subject of extensive studies
by proton magnetic resonance (McGrath & Paine,
1964; Pederson, 1966, 1968). McGrath & Paine ob-
served that, unlike the case for Ba(ClO;),.H,0,
Li;SO4.H,0 or gypsum, the proton-doublet splitting
in this crystal showed surprisingly little or no tem-
perature dependence. In view of the unusual coordi-
nation and behaviour of the water molecule it seemed
worth while to investigate this structure further using
three-dimensional neutron diffraction data. Towards
the completion of this investigation, however, an ac-
curate X-ray diffraction study using diffractometer data
(Hodgson & Ibers, 1969) (HI) came to our attention.
The results of the X-ray study have been compared
with the present results, the two being of comparable
precision.

Experimental

Neutron intensity data were collected using the 4-circle
neutron diffractometer 3-D FAD (Momin, Sequeira &
Chidambaram, 1968) at the CIRUS reactor in Trom-
bay. A cylindrical crystal specimen, 4-2 mm in diameter
and 4-7 mm long (weight 126 mg) with its axis parallel
to the crystallographic b axis, was prepared from a
large single crystal grown by slow evaporation from a
saturated aqueous solution. The crystal was dipped
several times in liquid nitrogen so as to reduce extinc-
tion effects and mounted in the ‘symmetric’ position
with its b axis parallel to the ¢ axis. The orientation
of the specimen and the cell parameters were first re-
fined on the basis of the optimized 26, ¥ and ¢ values
of some 20 arbitrary reflexions, using our program
REFINE (Srikanta, 1968a). The refined values of the
cell constants (space group C2/c) agree well with the
more reliable values obtained by HI which are as fol-
lows: @=9-222 (3), b=6197 (2), c=10-690 (5) A and
B=110-70 (3)°. The intensities of 414 independent re-
flexions within the limit sin 6/4=0-575 (1=1-406 A)
were then recorded using the 6-26 coupled step-scan-
ning technique. The scan-lengths ranged from 4 to 6°
in steps of 0-1°. As the automation was not completed
at the time, the recording was done manually at the
rate of two reflexions per hour. Two standard reflex-
ions were measured after every 20 reflexions to keep
a check on the stability of the crystal and that of the
counting equipment. The peak intensities of the 0k0
reflexions showed little variation as a function of rota-
tion about the scattering vector, indicating that the
effects of multiple reflexions were small. It was not
practicable to check the other reflexions for the effects
of multiple reflexion.

Thedata were reduced using our program DATARED
(Srikanta, 1968b). The signal counts were corrected for
background in the standard way to obtain the net
counts Cy, whose standard deviations [o(Cw)] were
estimated using the following relation (Busing & Levy,
1957)

0%Cn)=[Cs+(Ns/Np)2Cp+(0-1Cn)?],

where Cs is the total signal count in N steps and Cg
is the background count in Np steps. Cy and o(Cy)
were then converted to F2 and o(F2) respectively, by
applying the Lorentz and absorption corrections. An
absorption coefficient of 0-75cm~! (measured) was
used. The values of F2 were averaged* for the few re-
flexions measured more than once.

* Refinement

The atomic positions and isotropic temperature factors
reported in the two-dimensional study of CSS were
taken as the starting parameters for the refinement.
An initial value of the scale factor was also estimated
by comparison with the two-dimensional data. The
least-squares refinement was carried out on F2 with
weights w=1/02(F2), using the program ORFLS (Bus-
ing, Martin & Levy, 1962) incorporating modifications
by Hamilton, Ibers & Johnson. Three cycles of iso-
tropic refinement followed by three cycles of aniso-
tropic refinement resulted in values of 0-061 and 0-117
respectively, for Ry(=X||F,|—|F||/E|F,]) and R,(=
X|F2— F2|/ZF?). At this stage it was obvious that the
F2 values of the intense reflexions were affected by ex-
tinction and hence an empirical extinction correction
of the form
F?(corrected) =F2 exp (gQ) ,

where Q= F%(corrected)/sin 26, was applied. A value
of 0-00202 for the constant g was obtained by plotting
log (F2/F?) as a function of F?2/sin 26. This reduced R,
and R, to 0-044 and 0-068 respectively in two more
cycles of refinement. An error-analysis carried out at
this stage gave the following relation for the average
discrepancies between observed and calculated F?’s:
{4(F?)|Day=0-15+0-05Q .
Two more cycles of anisotropic refinement using a
weighting scheme w—12=(]4(F?)|>av and a revised
value of g=0-00218 reduced R; and R, to 0-038 and
0-054. An examination of the data at this stage showed
that for a few (11) weak reflexions the discrepancies
(I4(F?)]) were greater than 5¢. These reflexions were
rejected leaving 403 independent reflexions. The error-
analysis was repeated ({|4(F2)|>=0-138+0-0374Q) and
further anisotropic refinement was carried out omit-
ting observations for which F2<2¢. Finally the scat-
tering amplitudes of K, O and C atoms were also al-
lowed to vary, the scattering amplitude of H being
fixed at —0-378 x 1012 cm. Their values (in units of
10-12c¢m) converged to 0-373 (8), 0-593(10) and
0-675 (12) for K, O and C respectively. The final R
values were as follows:

Number of

observations Ry R, R;,
403 0-029 0045  0-061
375 (Fo>20) 0-026 0045  0-060

* The mutual agreement in the intensities of the repeated
refiexions was generally better than 1 per cent.



Table 1. Positional and thermal parameters for K,C,04.H,0

The X-ray parameters are from Hodgson & Ibers,

en multiplied by 105,
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(sz—ray + 02
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—12 (25)

—10(4)

f the pooled error op

and our numbering system corresponds to theirs. The values of all the parameters have be

and the standard deviations are given in parentheses. The differences A are expressed in terms o
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0-1
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0(2)

320 (10)
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03
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0
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2:5
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0-8
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1-4
025
025
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49578 (35)
49740 (30)

0-8
0
0
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1-5
213 (8)

08
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0-7
918 (33)
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590 (10)

4-0
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* The form of the anisotropic temperature factor is exp [ — (B1142 + Ba2k2 + P332+ 2120k + 21 3h1 + 2823k D)] .
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Discussion

The final positional and thermal parameters with
standard deviations in parentheses are given in Table 1,
where they are also compared with the corresponding
values of the parameters found by HI. For the non-
hydrogen atoms, the standard deviations of the par-
ameters in the two sets are comparable and the overall
agreement between them is excellent. The bond dis-
tances and bond angles are compared in Table 2; the
O-H distance found by the X-ray method is too low,
in agreement with the general trend in X-ray deter-
minations. The final values of F2 and F?2 are listed in
Table 3.

The structure is as described by CSS and by HI.
Numbering of the atoms in this paper corresponds to
that of HI. A complete description of the coordination
of the water molecule and its hydrogen bonding has
been given by CSS and will not be repeated here.

Oxalate ion

The oxalate ion with its two parallel O(1)-C-0O(2)
planes separated by 0-037 (6) A is not quite planar,
although the sum of the bond angles around the car-
bon atom is 359-98 (16)°. The values of 1-5698 (17),
12559 (14) and 1-2487 (15) A for the C-C, C-O(1) and
C-0O(2) bond lengths are in good agreement with the
values of 1-5740 (24), 1-2595(16) and 1-2473 (17) A
obtained by HI. The bond between the carbon atom
and the hydrogen-bonded oxygen atom [C-O(1)] is
somewhat longer than the other carbon-oxygen
[C-0O(2)] bond,; a still larger difference between C-O(1)
and C-0O(2) was found by CSS in their earlier, less ac-
curate two-dimensional neutron study and ascribed
tentatively to the partial covalent character of the hy-
drogen bond for which O(1) is the acceptor. HI have
also found a difference between the two C-O bonds
and in the same direction, though of about twice the
magnitude of that found in this investigation.

Motion of the water molecule

The mean-square amplitudes (us;) of thermal motion
of the water oxygen and hydrogen atoms referred to
the principal axes of the water molecule (X, along the
H-H bond, X, along the twofold axes and X; along
the plane normal) are given in Table 4.

The excellent agreement between the neutron and
X-ray values of the thermal parameters of the non-
hydrogen atoms suggests that these values must be
realistic. It is surprising that the mean-square ampli-
tude of the hydrogen atom normal to the molecular
plane is considerably less than that of the oxygen atom.,
In view of this a ‘riding’ model (Busing & Levy, 1964)
is invalid and it is not possible to get a meaningful
correction of the O-H bond distance for thermal mo-
tion.

The assistance of Shri S.N,Momin and Shri H.Ra-
jagopal in recording some of the data is gratefully

* Ruw= [w(Fo2 — Fe2)2[cwwFo4]1/2.
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Table 2. Bond distances (in A) and angles (in degrees)

The standard deviations are given in parentheses.

Bond
C-—C
C —0)
C-—0(2)
O(1)-C -—0(2)
C—C-—0Q)
C —C —0(2)
0O(3)—O0(1)
O(3)-H
H—H*
H—O@Q3)-Ht
0O(1)-0(3)—O0(1)
H—O0(3)—0(1)
0O(3)-H——0(1)

This work
1-5698 (17)
1-2559 (14)
1-2487 (15)

125-89 (9)

116-24 (10)

117-86 (9)
2-7536 (17)
0-9628 (33)
1-5541 (49)

107-62 (33)

118-82 (9)
674 (14)

169-66 (22)

Hodgson &
Ibers
1-5740 (24)
1-:2595 (16)
1-2473 (17)

126-27 (12)

115-76 (14)

117-96 (13)
2:7602 (17)
0-80 (3)

1069 (32)

1659 (29)
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* The angle from the a axis to the H-H vector measured away from the ¢ axis is 46:45° (20).
1 The dihedral angle between the H-O(3)-H and O(1)-0O(3)-O(1) planes is 4:50° (17).

Table 3. Observed and calculated structure factors for K,C,04. H,O

The nuclear scattering lengths used are (in units of 10-12 cm): potassium 0-373, carbon 0-675, oxygen 0-593 and hydrogen —0-378.

The four columns in each set contain the Miller indices 4, /, 100Fo2 and 100Fc2.
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Table 4. Mean-square amplitudes of O(3) and H, in A2
Un Uz Usz U2 Uiz Uz
0-01988 0-02566 0-06434 0:00038 0

o@3)
H

0
0-02853 0-03891 004428 0-00429 0-00290 0-00003

acknowledged. The authors are grateful to Drs J.A.
Ibers and D.J.Hodgson for communicating their re-
sults prior to publication.

CHIDAMBARAM, R., SEQUEIRA, A. & SIKKA, S. K. (1964).
J. Chem. Phys. 41, 3616.

HoDGsON, D. J. & IBERs, J. A. (1969). Acta Cryst. 25, 469.

MCcGRATH, J. W. & PAINE, A. A. (1964). J. Chem. Phys.
41, 3551.

Mowmin, S. N., SEQUEIRA, A. & CHIDAMBARAM, R. (1968).
Unpublished.

PEDERSON, B. (1966). Acta Cryst. 20, 412.

PEDERSON, B. (1968). Acta Chem. Scand. 22, 453.

SRIKANTA, S. (1968a). Unpublished.

SRIKANTA, S. (19685). Unpublished.

References
Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 70.
Busing, W. R. & Levy, H. A. (1964). Acta Cryst. 17, 142.
Busmg, W. R., MArTIN, K. O. & Levy, H. A. (1962).
ORFLS, A Fortran Crystallographic Least-Squares Pro-
gram. Oak Ridge National Laboratory Rept. ORNL-
TM-305.



