Then Ω, the solid angle shielded is given by

$$
\begin{aligned}
\Omega & =2 \int_{\gamma-\beta}^{\alpha} \int_{0}^{F(\theta)} \sin \theta \mathrm{d} \theta \mathrm{~d} \varphi \\
& =2 \int_{\gamma-\beta}^{\alpha} \sin \theta F(\theta) \mathrm{d} \theta .
\end{aligned}
$$

Finally we get the 'shielded fraction' by dividing by the total solid angle subtended by oxygen $O(1)$.
Shielded fraction $=\frac{\Omega}{2 \pi(1-\cos \alpha)}$.

Case 3. Large fraction shielded

If $\gamma<\beta<\alpha+\gamma$, overlap occurs and the width of the area shielded lies between the radius and the diameter of the atom being shielded. In this case the solid angle shielded $=A+B$,
where $A=\int_{0}^{\beta-\gamma} \int_{0}^{2 \pi} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi$

$$
=2 \pi[1-\cos (\beta-\gamma)]
$$

and $\quad B=2 \int_{\beta-\gamma}^{\alpha} \sin \theta \mathrm{F}(\theta) \mathrm{d} \theta$.
Then for the 'shielded fraction' we have
'Shielded fraction' $=\frac{A+B}{2 \pi(1-\cos \alpha)}$.
Case 4. Complete shielding
If $\beta \geq \alpha+\gamma$ the oxygen atom is completely shielded and
'Shielded fraction' $=1$.

References

Appleman, D. E. \& Clark, J. R. (1965). Amer. Min. 50, 1827.
Baird, D. C. (1962). Experimentation: An Introduction to Measurement Theory and Experiment Design, pp.64-66. Englewood Cliffs, N.J.: Prentice-Hall.
Brown, B. E. \& Balley, S. W. (1964). Acta Cryst. 17, 1391.
Chao, S. H., Hargreaves, A. \& Taylor, W. H. (1940). Miner. Mag. 25, 498.
Clark, Joan R. \& Appleman, D. E. (1960). Science, 132, 1837.
Evans, R. C. (1964). An Introduction to Crystal Chemistry, p.180. Cambridge Univ. Press.

Ferguson, R. B. (1960). The Canadian Mineralogist, 6, 415.
Ferguson, R. B., Traill, R. J. \& Taylor, W. H. (1958). Acta Cryst. 11, 331.
Ferguson, R. B., Traill, R. J. \& Taylor, W. H. (1959). Acta Cryst. 12, 716.
Gait, R. I. (1967). Ph.D. Thesis, Univ. of Manitoba.
Jones, J. B. (1968). Acta Cryst. B24, 355.
Jones, J. B. \& Taylor, W. H. (1961). Acta Cryst. 14, 443.
Laves, F. \& Goldsmith, J. R. (1961). Cursillos Conf. Inst. 'Lucas Mallada', 8, 71.
MacKenzie, W. S. \& Smith, J. V. (1959). Acta Cryst. 12, 73.
Megaw, H. D. (1956). Acta Cryst. 9, 56.
Pauling, L. (1929). J. Amer. Chem. Soc. 51, 1010.
Pauling, L. (1960). The Nature of the Chemical Bond, p. 543. Ithaca, N.Y.: Cornell Univ. Press.
Ribbe, P. H. \& Gibbs, G. V. (1967). Trans. Amer. Geophys. Union, 48, 229
Ribbe, P. H., Megaw, H. D. \& Taylor, W. H. (1969). Acta Cryst. B25, 1503.
Smith, J. V. (1954). Acta Cryst. 7, 479.
Smith, J. V. (1961). Cursillos Conf. Inst. 'Lucas Mallada', 8, 39.
Smith, J. V. \& Bailey, S. W. (1963). Acta Cryst. 16, 801.

Neutron Diffraction Refinement of the Structure of Potassium Oxalate Monohydrate

By A.Sequeira, S. Srikanta and R.Chidambaram
Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 85, India

(Received 19 February 1969)
The structure of potassium oxalate monohydrate has been refined to a high degree of precision using three-dimensional neutron diffraction data. The conventional R value is 0.026 and the estimated standard deviations of atomic coordinates are between 0.001 and $0.003 \AA$. The oxalate ion is not quite planar with a separation of 0.037 (6) \AA between the two parallel carboxyl planes. The C-C bond length is 1.581 (2) \AA and the two $\mathrm{C}-\mathrm{O}$ bond lengths are 1.262 (2) and 1.256 (2) \AA. The $\mathrm{O}-\mathrm{H}$ distance in the hydrogen bonds from the water molecule to the oxalate ion is 0.963 (3) \AA; the $\mathrm{O} \cdots \mathrm{O}$ distance is 2.754 (2) \AA, the $\mathrm{O}-\mathrm{H}-\mathrm{-}$ O angle is $169.66(22)^{\circ}$ and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle, $107.62(33)^{\circ}$. The root-mean-square amplitude of thermal motion of the water oxygen atom is considerably larger than that of the hydrogen atoms in some directions. The structure is compared with a recent X-ray structure of the same crystal and the agreement is excellent.

Introduction

In an earlier paper (Chidambaram, Sequeira \& Sikka, 1964) (CSS) we reported a two-dimensional neutron
diffraction study of the structure of potassium oxalate monohydrate. In that study the water molecule was shown to have a rather unusual type of coordination with neither of its two lone-pairs of electrons being
specifically directed. The water molecule in this crystal has recently also been the subject of extensive studies by proton magnetic resonance (McGrath \& Paine, 1964; Pederson, 1966, 1968). McGrath \& Paine observed that, unlike the case for $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ or gypsum, the proton-doublet splitting in this crystal showed surprisingly little or no temperature dependence. In view of the unusual coordination and behaviour of the water molecule it seemed worth while to investigate this structure further using three-dimensional neutron diffraction data. Towards the completion of this investigation, however, an accurate X-ray diffraction study using diffractometer data (Hodgson \& Ibers, 1969) (HI) came to our attention. The results of the X-ray study have been compared with the present results, the two being of comparable precision.

Experimental

Neutron intensity data were collected using the 4-circle neutron diffractometer 3-D FAD (Momin, Sequeira \& Chidambaram, 1968) at the CIRUS reactor in Trombay. A cylindrical crystal specimen, 4.2 mm in diameter and 4.7 mm long (weight 126 mg) with its axis parallel to the crystallographic b axis, was prepared from a large single crystal grown by slow evaporation from a saturated aqueous solution. The crystal was dipped several times in liquid nitrogen so as to reduce extinction effects and mounted in the 'symmetric' position with its b axis parallel to the φ axis. The orientation of the specimen and the cell parameters were first refined on the basis of the optimized $2 \theta, \chi$ and φ values of some 20 arbitrary reflexions, using our program REFINE (Srikanta, 1968a). The refined values of the cell constants (space group $C 2 / c$) agree well with the more reliable values obtained by HI which are as follows: $a=9.222$ (3), $b=6 \cdot 197$ (2), $c=10 \cdot 690$ (5) \AA and $\beta=110 \cdot 70(3)^{\circ}$. The intensities of 414 independent reflexions within the limit $\sin \theta / \lambda=0.575(\lambda=1.406 \AA)$ were then recorded using the $\theta-2 \theta$ coupled step-scanning technique. The scan-lengths ranged from 4 to 6° in steps of $0 \cdot 1^{\circ}$. As the automation was not completed at the time, the recording was done manually at the rate of two reflexions per hour. Two standard reflexions were measured after every 20 reflexions to keep a check on the stability of the crystal and that of the counting equipment. The peak intensities of the $0 k 0$ reflexions showed little variation as a function of rotation about the scattering vector, indicating that the effects of multiple reflexions were small. It was not practicable to check the other reflexions for the effects of multiple reflexion.

The data were reduced using our program $D A T A R E D$ (Srikanta, 1968b). The signal counts were corrected for background in the standard way to obtain the net counts C_{N}, whose standard deviations $\left[\sigma\left(C_{N}\right)\right.$] were estimated using the following relation (Busing \& Levy, 1957)

$$
\sigma^{2}\left(C_{N}\right)=\left[C_{S}+\left(N_{S} / N_{B}\right)^{2} C_{B}+\left(0 \cdot 1 C_{N}\right)^{2}\right]
$$

where C_{S} is the total signal count in N_{S} steps and C_{B} is the background count in N_{B} steps. C_{N} and $\sigma\left(C_{N}\right)$ were then converted to F^{2} and $\sigma\left(F^{2}\right)$ respectively, by applying the Lorentz and absorption corrections. An absorption coefficient of $0.75 \mathrm{~cm}^{-1}$ (measured) was used. The values of F^{2} were averaged* for the few reflexions measured more than once.

Refinement

The atomic positions and isotropic temperature factors reported in the two-dimensional study of CSS were taken as the starting parameters for the refinement. An initial value of the scale factor was also estimated by comparison with the two-dimensional data. The least-squares refinement was carried out on F^{2} with weights $\omega=1 / \sigma^{2}\left(F^{2}\right)$, using the program ORFLS (Busing, Martin \& Levy, 1962) incorporating modifications by Hamilton, Ibers \& Johnson. Three cycles of isotropic refinement followed by three cycles of anisotropic refinement resulted in values of 0.061 and 0.117 respectively, for $R_{1}\left(=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|\right)$ and $R_{2}(=$ $\left.\Sigma \mid F_{o}^{2}-F_{c}^{2} / / \Sigma F_{o}^{2}\right)$. At this stage it was obvious that the F_{o}^{2} values of the intense reflexions were affected by extinction and hence an empirical extinction correction of the form

$$
F_{o}^{2}(\text { corrected })=F_{o}^{2} \exp (g Q),
$$

where $Q \equiv F_{o}^{2}$ (corrected)/sin 2θ, was applied. A value of 0.00202 for the constant g was obtained by plotting $\log \left(F_{o}^{2} / F_{c}^{2}\right)$ as a function of $F_{c}^{2} / \sin 2 \theta$. This reduced R_{1} and R_{2} to 0.044 and 0.068 respectively in two more cycles of refinement. An error-analysis carried out at this stage gave the following relation for the average discrepancies between observed and calculated F^{2} 's:

$$
\langle | \Delta\left(F^{2}\right)\left\rangle_{\mathrm{av}}=0 \cdot 15+0 \cdot 05 Q\right.
$$

Two more cycles of anisotropic refinement using a weighting scheme $\omega^{-1 / 2}=\langle | \Delta\left(F^{2}\right)| \rangle_{\mathrm{av}}$ and a revised value of $g=0.00218$ reduced R_{1} and R_{2} to 0.038 and 0.054 . An examination of the data at this stage showed that for a few (11) weak reflexions the discrepancies $\left(\left|\Delta\left(F^{2}\right)\right|\right)$ were greater than 5σ. These reflexions were rejected leaving 403 independent reflexions. The erroranalysis was repeated $\left(\langle | \Delta\left(F^{2}\right)\rangle=0 \cdot 138+0.0374 Q)\right.$ and further anisotropic refinement was carried out omitting observations for which $F_{o}^{2}<2 \sigma$. Finally the scattering amplitudes of K, O and C atoms were also allowed to vary, the scattering amplitude of H being fixed at $-0.378 \times 10^{-12} \mathrm{~cm}$. Their values (in units of $\left.10^{-12} \mathrm{~cm}\right)$ converged to $0.373(8), 0.593(10)$ and 0.675 (12) for K, O and C respectively. The final R values were as follows:

Number of observations	R_{1}	R_{2}	R^{*}
403	0.029	0.045	0.061
375 ($F_{o}>2 \sigma$)	0.026	$0 \cdot 045$	0.060

[^0]Table 1. Positional and thermal parameters for $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
The X-ray parameters are from Hodgson \& Ibers, and our numbering system corresponds to theirs. The values of all the parameters have been multiplied by 10^{5},

Discussion

The final positional and thermal parameters with standard deviations in parentheses are given in Table 1, where they are also compared with the corresponding values of the parameters found by HI. For the nonhydrogen atoms, the standard deviations of the parameters in the two sets are comparable and the overall agreement between them is excellent. The bond distances and bond angles are compared in Table 2; the $\mathrm{O}-\mathrm{H}$ distance found by the X-ray method is too low, in agreement with the general trend in X-ray determinations. The final values of F_{o}^{2} and F_{c}^{2} are listed in Table 3.

The structure is as described by CSS and by HI . Numbering of the atoms in this paper corresponds to that of HI. A complete description of the coordination of the water molecule and its hydrogen bonding has been given by CSS and will not be repeated here.

Oxalate ion

The oxalate ion with its two parallel $\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(2)$ planes separated by 0.037 (6) \AA is not quite planar, although the sum of the bond angles around the carbon atom is $359.98(16)^{\circ}$. The values of $1.5698(17)$, $1 \cdot 2559$ (14) and $1 \cdot 2487$ (15) \AA for the C-C, C-O(1) and $\mathrm{C}-\mathrm{O}(2)$ bond lengths are in good agreement with the values of $1.5740(24), 1 \cdot 2595(16)$ and $1.2473(17) \AA$ obtained by HI. The bond between the carbon atom and the hydrogen-bonded oxygen atom $[\mathrm{C}-\mathrm{O}(1)]$ is somewhat longer than the other carbon-oxygen $[\mathrm{C}-\mathrm{O}(2)$] bond; a still larger difference between $\mathrm{C}-\mathrm{O}(1)$ and $\mathrm{C}-\mathrm{O}(2)$ was found by CSS in their earlier, less accurate two-dimensional neutron study and ascribed tentatively to the partial covalent character of the hydrogen bond for which $O(1)$ is the acceptor. HI have also found a difference between the two $\mathrm{C}-\mathrm{O}$ bonds and in the same direction, though of about twice the magnitude of that found in this investigation.

Motion of the water molecule

The mean-square amplitudes $\left(u_{t j}\right)$ of thermal motion of the water oxygen and hydrogen atoms referred to the principal axes of the water molecule (X_{1} along the $\mathrm{H}-\mathrm{H}$ bond, X_{2} along the twofold axes and X_{3} along the plane normal) are given in Table 4.

The excellent agreement between the neutron and X-ray values of the thermal parameters of the nonhydrogen atoms suggests that these values must be realistic. It is surprising that the mean-square amplitude of the hydrogen atom normal to the molecular plane is considerably less than that of the oxygen atom. In view of this a 'riding' model (Busing \& Levy, 1964) is invalid and it is not possible to get a meaningful correction of the $\mathrm{O}-\mathrm{H}$ bond distance for thermal motion.

The assistance of Shri S. N. Momin and Shri H.Rajagopal in recording some of the data is gratefully

[^1]Table 2. Bond distances (in \AA) and angles (in degrees)
The standard deviations are given in parentheses.

This work
$1.5698(17)$
$1.2559(14)$
$1.2487(15)$
$125.89(9)$
$116.24(10)$
$11786(9)$
$2.7536(17)$
$0.9628(33)$
$10.5541(49)$
$10762(33)$
$118.82(9)$
$6.74(14)$
$169.66(22)$

 Ibers	Δ / σ_{p}
$1.5740(24)$	1.4
$1.2595(16)$	1.7
$1.2473(17)$	0.6
$126.27(12)$	2.5
$115.76(14)$	2.8
$117.96(13)$	0.6
$2.7602(17)$	2.7
$0.80(3)$	5.4
$106.9(32)$	0.2
$165.9(29)$	1.3

* The angle from the a axis to the $\mathrm{H}-\mathrm{H}$ vector measured away from the c axis is 46.45° (20).
\dagger The dihedral angle between the $\mathrm{H}-\mathrm{O}(3)-\mathrm{H}$ and $\mathrm{O}(1)-\mathrm{O}(3)-\mathrm{O}(1)$ planes is $4 \cdot 50^{\circ}(17)$.

Table 3. Observed and calculated structure factors for $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
The nuclear scattering lengths used are (in units of $10^{-12} \mathrm{~cm}$): potassium 0.373 , carbon 0.675 , oxygen 0.593 and hydrogen -0.378 . The four columns in each set contain the Miller indices $h, l, 100 F_{o}^{2}$ and $100 F_{c}{ }^{2}$.

		x-0		6		102	To		1029	968		22	11	9	64	$3)$		7	1362	1262			3059	3005			97	85			24	00			731	${ }^{116}$
	2	238	2316		2	1340	1311	5	88	73		332	sos	10	150	128		8	2397	2396			415	393		2	958	934			35	20			320	309
	4	6851	77		4	945	956		107	110		160	15s	11	1191	1248	6	0	5061	3013			31	21		,	64	66	2		651	537			1118	1069
	6	248	9		6	2273	${ }_{2281}$	8	1644	1577		63	56	-2 1	. 3606	3720		2	35	24			699	696			* - 4				2000	2057	1 O		32	845
-8	2	295	2	8	0	318	3462	9	or	03		74	54	2	9469	868 e		3	430	407	-1		242	210	-8	1	1418	1380			545	429			332	334
	4	604	592		2	1263	1219	10	3	33		565	531	,	680	639		4	12	∞			83	780		2	71	61			249	2696			4835	5205
	6	4717	4981		4	185	186	11	2572	2684	7	53	49	4	128	98		5	598	554			517	493		,	5136	5428			1357	1311			$4<6$	396
	${ }^{\circ}$	10	02			$x=1$		-1	5231	4946		2057	2062	5	7	56		6	4	28			180	170		4	150	106			3997	4562			818	813
	10	425	442	,	1	49	53	2	1271	1185		641	622	6	238	237	8	0	4545	4470			149	145		5	295	237			30	∞			1407	1348
-6	2	10107	10271		2	177	166	3	51	45		501	440	8	3029	3090		1	13	10			2573	2630	-6	,	171	190			745	696			1073	1048
	4	334 150	318 149		3	17	171		10715	${ }^{9889}$		${ }^{23}$	${ }^{08}$	9	150	157		2	796	310			209	207		2	656	561	*		196	190			\bigcirc	03
	6	${ }^{150}$	149		4	139	120		3285	3375		os	∞	10	${ }^{15 \%}$	1559		,	385	342			30	19		3	2611	2669			53	498	3		2052	2013
	10	15889	15236			3515	3765		61	4	9	1416	1417	:	615	590			$x=3$ 1759				857	862		4	2509	2643			5059	5823			1229	1296
-4	${ }^{10}$	2560	2397			473	${ }^{666}$		1678	1587		1336	1300	0 O	1084	1006	9	2	1750	1758			124	109		5	4343	4549			0	03			84	. 66
		389	341		7	1994	1979		35	32		$\mathrm{k}=2$!	114	335		3	579	586	1		147	133		6	1094	1112			46	05			27	∞
		15020	14626		8	142	151		129	121	-	2271	2291	2	O	37		4	3015	3074			3284	3575		7	135	122			3036	3069			416	377
	8	2407 4318	2242		9	79	69	10	2739	2749		2691	2807	3	6290	5849		5	127	409		2	2775	2927		8	1258	1211			453	420			13	02
	8 8	4318 9523	49	1	1	1241	1188		136	119		1304	1275	4	651	593	-7	1	27	1012		,	388	326	-	1	399	373	6	0	2019	2099	5		12	∞
	12	9523 35	9820		2	77	32	1	564	53		4941	${ }^{4913}$	5	905	865		2	2646	2675		,	2266	2300		2	82	72			133	124			4908	5119
-2	2	38	345		4	1399	1396		${ }_{2}^{2380}$	3		552	13	7	${ }^{3}$	62		,	1062	1070			69	73		3	304	318			905	920			769	736
	4	2930	2883		5	158	154		2236 3637	5		4509	9	8	\%	18		4	3783 1604	3916 1623		6	5348	5988		4	2297	2300		3	247	${ }^{223}$			780	889
	6	209	196		6	3611	3670		367 565	- 563		502	${ }^{4656}$	9	670	698		6	276	210		7	513	+356		5	66	463			$\mathrm{k}=5$				$\mathrm{k}=6$	
	8	6571	6548		8	6408 167	6688 155		12	∞		${ }^{189}$	161	10	217	16		7	909	936		9	1062	3385 1086		7	${ }^{966}$	${ }_{1} 968$	-7	,	270	270	-4		184	165
$0{ }_{0}^{10}$		156	146			3811	- 4		819	816	-6	02	01	20	304	260		8	368	358	3		4075	-336		9	107	98	-s	'	1077 205	1067			1076	1064 105
		5842	5797		10	19	23		4322	4818		939	939	t	154	157		9	171	167			176	158	-2	1	2268	2361		3	1961	2007	-2		114	105 99
	4	3210	3300		11.	22	220		1157	1498		3369	3448	2	6154	7036	-5	,	12	03		2	214	199		2	1044	939		4	636	616	-2		4442	4499
	6	12803	13310		11	559	530		2320	225		123	1	,	${ }^{98}$	992		2	7745	8311		,	2770	2946		,	142	140		5	1629	1682				
	${ }^{8}$	76	62		2	931	928		24	18		1214	1137		6416	6793		,	55	48		4	175	163		4	1253	1241		5	2299	2289		3	188	118
	10	545	522		3	622	609	3	1952	2004		7612	7909	5	${ }^{2619}$	2642		1	88	71		5	299	298		5	172	168		7	102	69		5	38	16
2		7903	${ }_{7679} 77$		4	2834	2756		1934	1936		718	723	6	865	867		5	1513	1515		6	5310	5796		6	214	189	-3	1	2826	2937	0	5	8044	7917
	2	7035	${ }^{7674}$		5	17	1		1400	${ }^{393}$		851	830	7	430	424		6	13	13		7	276	272		7	311	308		2	1600	1577	0		953	1016
	4	25	00		6	119	107		727	722	10	85	65	9		2087		7	455	435		8	2686	2662		-	279	242		3	216	197			1233	1314
	6	1626	1577		7	133	131		93	96	-4	52	36	0		10 956		8	35	29	5	0	1151	1166		9	779	777		4	1×8	1278		5	274	278
	-	2249 47	2345 61		8	4499	4078		${ }_{5}^{2117}$	2213		390	355	0		956 1431		9	330	332 606		1	11	05	\bigcirc	0	${ }^{6126}$	${ }^{6228}$		5	1764	1707	2	0	919	788
4	10	47 74	61 761		9	6264	6785		513	481		15 625	14 548	2	3260	1431 381	-3	1	593 1220	606 1246		2	225	211		,	1809	1869		6	744	712			73	75
	2	68	55		10	1500	1437		895	-876		525	588 5327	,	229	225		3	1200	1246 579		3	415 3784	400 3923		3	${ }_{3}^{2336}$	243		7	743	74		2	2112	2026
	4	2169	2775	-3	11	4670 208	3885 177		3332	3579		25t2	2456		3517	3589		4	1208	1216 1201		5	3784 245	3923 220		5	376 671	335 693	-1	1	89 519	81 495		3	458 1523	105 1455
	6	725	69		2	1444	197	5	128	109		317	316	5	960	951		5	28	11		6	348	336		6	3556	3560		3	2237	2218		0	2192	2312
\checkmark		27	15		,	214	18		213	187		523	cst	6	153	110		6	1306	1205	7	0	2104	2207		7	892	932		4	6774	6827		-	25	2312

Table 4. Mean-square amplitudes of $\mathrm{O}(3)$ and H , in \AA^{2}

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{O}(3)$	0.01988	0.02566	0.06434	0	0.00038	0
H	0.02853	0.03891	0.04428	0.00429	0.00290	0.00003

acknowledged. The authors are grateful to Drs J.A. Ibers and D.J.Hodgson for communicating their results prior to publication.

References

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 70. Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142. Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory Rept. ORNL-TM-305.

Chidambaram, R., Sequeira, A. \& Sikka, S. K. (1964). J. Chem. Phys. 41, 3616.

Hodgson, D. J. \& Ibers, J. A. (1969). Acta Cryst. 25, 469.
McGrath, J. W. \& Paine, A. A. (1964). J. Chem. Phys. 41, 3551.
Momin, S. N., Sequeira, A. \& Chidambaram, R. (1968). Unpublished.
Pederson, B. (1966). Acta Cryst. 20, 412.
Pederson, B. (1968). Acta Chem. Scand. 22, 453.
Srikanta, S. (1968a). Unpublished.
Srikanta, S. (1968b). Unpublished.

[^0]: * The mutual agreement in the intensities of the repeated refiexions was generally better than 1 per cent.

[^1]: * $R_{w}=\left[\omega\left(F_{0}{ }^{2}-F_{c}^{2}\right)^{2} / \omega F_{0}\right]^{1 / 2}$.

